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1. Introduction.

In the method of stationary phase, one is concerned

with the asymptotic expansion, as X - -n of functions

defined by integrals of the form

b
(1.1) I(X) J exp {i)rp(t))f(t)dt.

a

We shall assume that the details of this method are

familiar to the reader and need not be discussed.

Our concern here shall be with the asymptotic

expansion of integrals of the form

(1.2)(N) j=b

a

in the case where the kernel function H(t) is oscillatory

for both large positive and large negative arguments.

More precisely, we assume that, as t - +-,

t I<V6 , N(m) -r
(1.3) H(t) -,expe 1i b tc-6 7 cnt r(log t)n.

1.0 m-O n=O

Here each b, is real, N(m) is finite for all m and

:Re(rm)1 is a monotonically increasing sequence with

limit +w. In the limit t - -- , we assume that an

expansion of the form (1.3) holds with t replaced by

Itl and with, in general, different constants.

Clearly the Fourier kernel exp(itj is a special

case of the general kernel we propose to study. Thus
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we should expect to recover from our asymptotic analysis

of (1.2) the stationary phase results valid for (1.1).

We should point out that there are functions, such

as the Airy function Ai(t), which are oscillatory in

one of the 11-mits t - +w and exponential in the other.

It will be apparent that integrals (1-2) with suc.- 1'unc-

tions as kernels can also be treated by the methods to

be developed below.

The method itself involves applications and

generalizations of an asymptotic technique recently

developed by Handelsman and Lew [1], (21, [3]. This

technique makes heavy use of the Mellin transform whose

relevant properties are discussed below. In references

( 1 1, ( 2 ] and ( 221 ] only the case ep(t) = t is treated.

Here, however, we shall consider more general tp and,

in particular, shall allow ep to be non-monotonic.

As is well-known, to derive the asymptotic expansion

of (1.1) one must first identify its set of critical

points. These include end points of integration,

stationary points of ffn and points where either V or

g fails to be infinitely differentiable. We shall show

that, in addition to all of the above, the set of

critical points for (1.2) also includes the zeros of rp.

Indeed, this is one of the main results of this paper.

To gain some insight into the critical nature of
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the zeros of m, suppose that (1.3) is only an asymptotic

result and, in particular, is not valid near t = 0.

Then, no matter how large X is, there always exists a

neighborhood of each zero of m throughout which H(Am)

is not asymptotically described by our assumed asymptotic

forms. In other words, the asymptotic expansion of H(Wt,),

as X - m, undergoes a drastic change as t passes

through any of these neighborhoods. For this reason we

can think of these neighborhoods as "boundary layer

regions." It is certainly reasonable that the rapid

change in the asymptotic behavior of H( t) as t

passes through a boundary layer region will affect the

asymptotic expansion of I.

In the light of the above argument we can under-

stand why the zeros of to are not critical points for

(1.1). Indeed, the Fourier kernel H(t) = exp(it),

has an asymptotic expansion as t - +w of the form

(1.3). This expansion, however, holds for all t so

that there are no boundary layer regions of the type

just described.

In the following section we reduce our problem to

the study of certain integrals of canonical type. In

Section 3, we consider some results concerning Mellin

transforms that are needed to implement our methods.

Finally the desired asymptotic expansion of I is
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obtained in Sections 4 and 5.

2. Reduction to Canonical Integrals.

Because there are many possible critical points

for integrals of the form (1.2) with H an oscillatory

kernel, it is convenient to have a means for isolating

them so that their contributions to the asymptotic

expansion of I can be studied separately. This can

be accomplished by using neutralizer functions. These

were first introduced by Van der Corput [ 4 3, and we

shall assume that their basic properties are familiar

to the reader. The net effect of the neutralization

process is to reduce the asymptotic analysis of (1.3)

to the study of a sum of integrals each having exactly

one critical point either as an upper or as a lower

end point of integration.

Suppose first that t - t0 is a critical point

at which m is non-zero. After neutralization, t = tO

will appear as either an upper or lower end point of

integration in at most two of the integrals to be

asymptotically evaluated. To obtain the corresponding

contributions to the asymptotic expansion of I, one

need only replace H(Xm) by the appropriate asymptotic

expansion and integrate the resulting series term by

term. Thus, finding these contributions is reduced to



the asymptotic evaluation of many integrals of the form

(1.1). We have, therefore, that the only critical points

which require non-standard methods of analysis are the

zeros of o.

As a result of the above discussion, we shall focus

our attention on obtaining the contribution to the

asymptotic expansion of (1.2) corresponding to a given

zero of rt. If we denote this zero by t = c and the

contribution by Ic(N), then after neutralization we

find that

(2.1) Ic(CA)= Ic (?) + Ic_ (N)

where

(2.2) 1c_ () = facH(N)gc- (t)dt

and

(2.3) I C+(x) = c H(WflgC+(t)dt.

Here g0 (t) vanishes for t < a < c with a chosen

so that e vanishes in [c,c] only at t c and c'

does not vanish in [a,c). Furthermore, gc (t) = g

in some small half neighborhood of t = c-.

Similarly, g + (t) vanishes for c < 0 < t with

B chosen so that ep vanishes in [ec,] only at t = c

and ml does not vanish in (c,a). Finally, g = g
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in some small half neighborhood of t = c+. Of course

if c coincides with one of the end points of inte-

gration in (1.2), then only one of the integrals Ic,

IC+ is non-zero.

Suppose now that as t -c , ep has an asymptotic

expansion whose leading term is given by

(2.4) 'y -- 0 (c-t) 0 , I > O.

If in (2.2) we introduce the new variable of integration

(2.5) s =i UC (t), PC =sgn y0

then we can write

(2.6)) rH ('A
(2.6) Cc 0 s )G_(s)ds.

Here

(2.7) G g (t(s)) gt

which we note vanishes for s > w (

Similarly, if we assume that as t - C+

(2.8) 0()-•(t-C) pO, 0 >0

and set

(2.9) = c+ , U = sgn r0P

then I can be written
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(2.10) Ic ('A) H(c+ s)G+(s)ds.
+ 0 +

Here

(2.11) G (s)= (t(s))dt

which vanishes for s > pi ().

Thus we have reduced our problem to the study of

the two canonical integrals

(2.12) I (A) = r"H(*s)G(s)ds10

where the kernel H(t) is oscillatory in each of the

limits t - +w and G(s) vanishes for s outside of

some finite interval.

3. Results on Mellin Transforms.

As we shall see, Mellin transforms play an important

role in our asymptotic development. Indeed, one might

anticipate this upon observing that each of the canonical

integrals (2.12) can be expressed as a Mellin convolution

[3].

The Mellin transform of a function f(s) is defined

by

(3.1) M[f;z] =j Jof(s)sZ-lds, z = x+iy

when this integral exists. Furthermore if f is such that
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(3.2) f(s) = 0(sP), s - 0+

f(s) = o(s-r), s -+.

Then M[f;z] converges and is holomorphic in the strip

(3.3) -p < Re(z) = x < r.

Also, within this strip lrm IM[f;x+iy]l = 0.
lyl-

if in (3.2) -p > r, then M(f;z] does not exist

in the ordinary sense. Nevertheless with certain addi-

tional assumptions on f one can define M[f;z] in a

generalized sense (3 ]. We shall not need to appeal to

this extension in this paper however.

From our point of view, there are two results con-

cerning Mellin transforms that are of special significance.

The first is the simple relation

(3.-) M[f(As);z] = ?J-zff(s)sZ-lds = ?-ZM[f;z].
0

The seconi involves integrals of the form

(3.•) J = Pf(s)h(s)ds.
0

InJeed, suppose that M[f;z] and M[h;z] are holo-

morphic In over±apping vertical strips. (This will

always be the case if J is absolutely convergent.)

If Re(z) c lies in the common strip of analyticity,

tnt n we na e
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(3.6) f(s)h(-)ds =TiC-im M[h;z]M[f;l-z]dz

which is Parseval's Theorem for Mellin transforms.

Upon combining these last two results, we find

that our canonical integrals (2.12) have the

representations

(3.7) 1*), ^*'xz[(S;zMGs;-~
•nT c+ -i M

Here Re(z) = c. lies in the strip of analyticity of

the integrand. We note that the total dependence of

the integrand on A is contained in the factor X-

Our plan is to push the contour of integration in

(3.7) to the right, apply Cauchy's integral theorem,

and derive thereby an asymptotic expansion of I*(A)

as a residue series. In order to accomplish this we

must obtain certain information about the analytic

continuations of the functions M[H(*s);z) and

M(G(s);l-z] into the right half plane. Specifically,

we must locate and classify the singularities of these

continuations, and we must estimate their behavior as

z - a along vertical lines.

For oscillatory functions, the required information

is contained in

Lemma 1. Suppose that H(s) is locally integrable on

(0,-) and satisfies (3.2) with -p < r. Suppose further



10

that, as s - +a , H(s) has an asymptotic expansion of

the form (1.3) in which event -r u rO. Then M[H;z]

can be continued into the right half plane Re(z) > -p

as a holomorphic function. Furthermore, in this right

half plane

(3.8) IM[H;z]I =e0

as iyi - -

Proof: The proof of this lemma is given in the Appendix.

As an example and to illustrate the sharpness of

the estimate (3.8), let us consider the function

H = expfisv] whose Mellin transform is given by [ 5 ]

(3.9) M[exp(isV);z] = exp(>)r( z, 0 < x < 1.

In this case r 0 = 0, and the analytic continuation

into Re(z) > 1 is explicit. We note that ()is

analytic in Re(z) > 0. The estimate (3.8) follows

from the known asymptotic expansion of the gamma

function
ix-l-

(3.10) r(z) ~- lYl 2 exp[-irIyI/2], lYl -.

As we have indicated above, our plan is to push

the contour of integration in (3.7) to the right. In

order to accomplish this we must of course determine



the analytic continuation of M[G;l-z] into a right

half plane. Let us assume for the present that this

has been done and M(G;I-z] is a meromorphic function.

Then to Justify the displacement of the contour to the

line Re(z) = k > c±, one must still show that

(3.11) lrm M[H(±s);z]M(G(s);l-z) 0 0, c,, x < k.lYl--
The estimate (3.8) Implies an algebraic growth of

M[H(±s);z] in this limit which worsens with increasing

x. This growth must therefore be compensated by a

commensurate decay of the analytic continuation of

M[G(s);l-z]. In the following sequence of lemmas, we

shall establish sufficient conditions for such decay.

Lemma 2. Let G(s) be q times continuously differentiable

on (0,-). Let G(q+l)(s) be piecewise continuous on

[O,k) and continuous for s > k. Finally suppose that

there exists a real number x 0 such that for all x > x0,

(s .s) (sXG(s)) vanishes, as s - 0+, for p = 0,1,2,...,q

and, as s - r, for p = 0,1,2,...,q+l. Then, as jYl - -,

(3.12) M[G;z] _ 0(Jyj-q-1)

for all x > x 0 .

Proof: The proof of this lemma is given in the Appendix.

Remarks: The hypotheses of Lemma 2 simply provide
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sufficient information to allow for the estimation of

M[G;z] via integration by parts. Furthermore the

assumptions on G imply that M[G;z] is holomorphic

in -x 0 < Re(z).

The next two lemmas follow from analogous results

for Fourier transforms. Their proofs will be omitted

here, but can be constructed from the corresponding

proofs in Titchmarsh (6 1.

Lemma 3. Let G(s) satisfy the conditions of Lemma 2

except now replace the condition on G(q+l)(s) by the

assumption that (sXG(s)) is of bounded total

variation. Then

(3.-13) M[G;z] = O(lyl-q'l),

as I~l - ', for all x > xO.

Lemma 4. Let G(s) satisfy the conditions of Lemma 2

except now replace the condition on G (q+l)(s) by the

assumption that s)5(sxG(s)) is IT61der continuous of

order 7 on [O,k) and of bounded total variation for

s > k. Then

(3.14) M[G;z= o( 1 yl-q-')

as Y!- for all x > xO.
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Lemmas 2-4 yield estimates on the decay of M(G;z]

in its region of absolute convergence or equivalently

in its region of analyticity. We now wish to obtain

analogous information outside of this region. A vie

shall soon see, the analytic continuation of M[G;z]

to the left, (and hence of M[G;l-z] to the right),

depends to a large extent on the nature of G(s) near

s = 0+. Indeed we have the following result due to

Handelsman and Lew (3 ]:

Lemma 2. Suppose that M[G;z] is holomorphic in the

region -a < Re(z) < B, and that, as s - 0+,
") N ) am~o )n

(3.15) G(s) 1 - dm (logsn
m=O n-O

with Re(am) t w and N(m) finite for each m. Then,

a = Re(aO) in (3.2) and M[G;z] can be continued into

Re(z) : - Re(a 0 ) as a meromorphic function with poles

at the points z = -a m. Moreover, about these points,

M[G;z] has a Laurent expansion with singular part

N(m)

n=O d - -amL

Remark. We note that when N(m) - 0 for each m, i.e.,

when no logaritnms appear in the expansion (3.15), all

of the poles in the analytic continuation of MQ ;z] to

the left are simple.
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If we combine the results of Lemmas I and 5, then

we can conclude that when G(s) has an expansion, as

s - 0+, of the form (3.15), all of the singularities

of the analytic continuation of M[H(*s);z], M[G;l-z]

into the right half plane are determined by the

exponents am. Moreover, these singularities are poles

so that our proposed deformation of contour will indeed

yield a residue series for I*(A). We must still esti-

mate M[G;l-z] as jyj - - in order to Justify the

deformation. For this purpose we now state

Lemma 6. Let G(s) satisfy the smoothness conditions of

Lemma 2. Also, let (SA-,(sXU) vanish, as s -w

for p = 0,1,...,q+l and x > l-Re(aO) = x0 . Finally

suppose that (3.15) holds and that the asymptotic

expansion of &m)(s), m - 0,...,q+l, as s - 0+,

is obtained by successively differentiating (3.15)

term by term. Then

(3.16) M[G;z] o(lyl-q-), lyl -

for all x. Here by M[G;z) we mean the analytic con-

tinuation of this Mellin transform into the entire z-plane.

Proof: The proof of this lemma is given in the Appendix.

Corollary. If, in Lemma 6, the stated conditions hold
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for all q, then M[G;z] - O((yjr) for all r and

all x.

We remark that, if in Lemma 6, the smoothness

conditions of Lemma 2 are replaced by those of either

Lemma 3 or Lemma 4, then the corresponding changes

must be made in the estimate (3.16). Nevertheless, one

still finds that the results obtained are valid for the

analytic continuation of the Mellin transform into the

entire complex plane.

To illustrate some of the results obtained above

let us consider an explicit example. Indeed, suppose

that

(3.17) G(s) = saes

which satisfies the conditions of Lemma 6 with a = a

and q = .. Then the corollary predicts that, as IjY -

M[G;z] decays faster than any power of ly-. For this

example we have the explicit result

M[G;z) = fl(a+z) =O(exp (41.)) 1 lyl-

which agrees with this prediction. Furthermore we have

from known properties of the gamma function that the

analytic continuation of r(a+z) into Re(z) < -a has

simple poles at the points z = -(a+m), m = 0,1,2,...,

with corresponding singular parts
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(3.18) (-l)m/m3(z+a+m).

As is readily seen, this last result is in agreement

with that predicted by Lemma 5.

4. Asymptotic Expansion of I*(k).

By using the theory of Mellin transforms developed

in the previous section, we shall now derive asymptotic

expansions for the two canonical integrals (2.11). We

first note that, if H(±s) has the asymptotic expansion

(1.3) as s - -, and G(s) has the asymptotic expansion

(3.15) as s - 0+, then in (3.7)

(4.1) c+ < Min(Re(ro0),Rell+ao))

since this is the right limit of the common strip of

analyticity of the integrand in that equation.

We state the main result concerning the asymptotic

behavior of I (X) in

Theorem 1. Let G(s) satisfy the conditions of Lemma 6

and H(*s) satisfy the conditions of Lemma 1. Then

N(m) -(am+l)

(4.2) 1*(X) d Xi • mnA

Re(am+l)<k n=O

n((-log \)JM(n-i)[H(,s);l+am] + ý,(X;k).
J=O

Here
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(43 ,Ak) fkiX'M[H(*s);z1M[G(s);l-z]
ATJk-i.'

-0Xk)

and

(4.4) k < v(q+V) + Re(rO)

where k A Re(am)+l for any m.

Proof: In the exact representation (3.7) we displace

the vertical contour of integration to the line

Re(z) = k > c.. We note that by Lemmas 1 and 5 the

analytic continuation of the integrand in (3.7) into

the right half plane is a meromorphic function with

poles at the points z = am+l, m = 0,1,.... Indeed,

we find, upon formally applying Cauchy's integral

theorem, that (4.2) is valid. Thus to complete the

proof of the theorem we need only Justify the displace-

ment itself and establish the error estimate given by

(4.3) and (4.4).

It follows from (3.8) and (3.16) that

(4.5) M[H(*s);x+iy]M[G(s);l-x-iy] = O(jyjC(x)), lyl -j -

Here

(4.6) E(x) - q + 3 (x-Re(ro))/v.
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Thus we can displace the contour to the line Re(z) = k

so long as e(k) > 0, i.e., so long as

(4.7) k < v(q + Re( 0 ).

With (4.7) satisfied we have that f(X;k) exists.

The estimate (4.3) need not hold, however. We note that

6 (X;k) can be viewed as a Fourier transform with

respect to log X. Indeed, we have

(4.8) Ak e(X;k)

= y exp(-iy log )]M[H(ks);k+iy]M[G(s);l-k-iy]dy.

Suppose now that (4.4) is Patisfied which, in turn,

implies that e(k) > 1. Then by applying the Riemann

Lebesgue lemma, we find that, as X - w, the right side

of (4.8) is o(l), and the estimate (4.3) follows.

Corollary. Let H(+s) satisfy the hypotheses of Lemma 1

and let G(s) satisfy the hypotheses of Lemma 6 with

q-. Then the infinite expansion

N (m) -a+1) n \
(•19)i(d X 7 dmn• _ (log N)JM(n'J)[H(*s);l+a]

m=O n=O J=O

holds as A - w.

Proof: It follows from the corollary to Lemma 6, that

in this case
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(4.10) M[H(*s);x+iy)J[G(s);l-x-iy] - o(tyj-r), jyr . w,

for all r and all x. Hence we can let k go to +a

in (4.2) and (4.3) to obtain the desired result.

We note that when, in (3.15), dim W 0 for n > 1

and all m, i.e., when no logarithms appear in the

asymptotic expansion of G(s), as s - 0+, the asymptotic

expansion (4.9) reduces to
- .(am+l)

(4.11) I(-A) ~ O dX0o M(H(ds);l+am].
m=0

In the proof of Theorem 1, the Riemann Lebesgue

lemma was applied to estimate NkC(N;k) as X- w.

Recently, Bleistein, Handelsman and Lew [ 7], have

obtained a generalization of this lemma which, under

slightly more restrictive assumptions can be used to

improve the error estimate found in Theorem 1. Indeed,

we have

Theorem 2. Let the hypotheses of Theorem 1 be satisfied

so that (4.5) holds with e(x) defined by (4.6). Suppose

further that

(h.12) M[H(,s);x+iy]M[G(s);1-x-iy] , coexp(icyU]3y1'(x),

as jyj - -, where a and u are any real numbers.

Then (4.2) and (4.3) hold with
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(4.13) k < v(q+i) + Re(r0 ), k pi Re(a m+l), m = 0,1,2,....

Proof: It follows from Theorem 1 that all we need show

is that (4.3) holds for all k satisfying (4.13). Thus

consider X k/(X;k) as given by (4.8). The results of

reference [7 ] show that whenever e(k) > 0,

(4.14) lim)kk X•(;k) = 0,

except possibly when 1 < 0 < 2 in (4.12). It is

further shown that (4.14) still holds with 1 < p < 2,

so long as

(4.15) 0 < E(k)-(l-ý) = q+l-(k-Re(r 0 ))/v +

Since 1 ' p, it is clear (4.15) is satisfied whenever

(4.1) holds. This completes the proof.

We wish to emphasize that the hypotheses of Theorem 2

differ from those of Theorem 1 only in that the former

includes an additional assumption concerning the oscil-

latory behavior of M(H(ts);z]M[G(s);l-z] in the limit

jyl - -. It is this more specific information that allows

us to apply the results of reference [7 ] and thereby

extend the validity of (4.3) to the region (4.4).

Our concern, of course, is ultimately with the

integrals Ic (N) from which the canonical integrals

I+(,) were directly derived. We recall that s = 0 in
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I'(-A) corresponds to t - c in Ic+ () where c is

a point in the original domain of integration at which

the phase function tp vanishes. If we assume that the

conditions of the corollary to Theorem 1 hold, then we

find that s = 0 is the only critical point for I÷()).

Thus the infinite expansion (4.9) can be used to obtain

the contribution to the asymptotic expansion of (1.2)

corresponding to a zero of T. We must point out, how-

ever, that we have not, as yet, established the critical

nature of t - c. This can be done by explicitly

obtaining the expansions of Ic (N) and adding them.

Only if the resulting sum is non-trivial can we conclude

that t - c is a critical point for I(N). We shall

investigate this point further in the following section

along with some illustrative examples.

5. Explicit Results and Examples.

We wish now to determine the contribution to the

asymptotic expansion of (1.2) corresponding to an

interior zero of m. Moreover, we want to express this

result explicitly in terms of the original functions

and g. In principle, we could, by using the results

of the previous section, find as many terms of this

contribution as desired. The computations, however,

become exceedingly awkward as the number of terms increases
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and hence, for the most part, we shall be content here

with obtaining expansions to leading order only. We

shall assume throughout this section that the functions

e and g are sufficiently smooth so that either

Theorem 1 or 2 can be applied to obtain the expansions

to the orders stated.

Let us suppose that in (1.2) tp(c) = 0 with

a < c < b. If, as in Section 2, we denote the contri-

bution corresponding to t = c by Ic (x), then we have

(5.1) Ic= Ic+ (') + Ic_ ()

with I (N) defined by (2.10) and (2.6) respectively.

We now assume that, as t - c+,

(5.2) g(t) - g+(t-c) "D+- , (t) - ro(t-c) P

C'(t) - 00"o0(t-c) , 00 > 0.

In this event, the change of variable (2.9) is easily

inverted to leading order. Indeed, we have

(5.3) (t-c) - (TýJI /00

as s - 0+. Thus, it follows from (2.11) and (5.2) that

in (2.10)

_(sI) (-/o -
+0

as s - 0+. Hence we find from (4.11) that, in this case
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(5+5) I (A)+o 1MFH( ) + 0 "A 1o
+ 0o 0+ P

as N o. Here p+ = sgn r0o

Similarly, if as t -. c

(5.6) g(t) ~ g _(c-t) ýU- .9 'n ~ -o(C-t) 0,

(, - -VoV 0o(c-t) , vo > o.

Then we find

(5.7) 1 (Ch) = -I( TW/V0OMFH( _s);fm] + (t1 ) .

Here p_ - sgn y0.

Upon adding (5.5) and (5.7) we obtain the desired

contribution from t = c to leading order. In most

instances the constants in the assumed expansions (5.2)

are closely related to the corresponding constants in

(5.6). Two cases are worthy of special consideration.

Suppose first that g is continuous and non-zero at

t = c so that

(5.8) 9+ = g_ = g(c), W+ = W .

Suppose further that T is differentiable at t = c

with e'(c) 4 0. Then

(5.9) r0 = Y '(c), 00 = 0  1.

It follows from (5.5-5.9) that
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(5.10) 1c (X) - [M[H(s);l] + M(H(-s);1)).c I C I ( ) l X

Let us now suppose that relations (5.8) hold, but

that e has a simple stationary point at t = c. Then

(5.11) o = TO= ep"(c)/2, P0 = 'o1l

so that, in this case, we have

(5.12) IC x) g(c)( -7.(;c) M[H(sgn &"(c)s);½.

This last formula is a generalization of the standard

stationary phase formula corresponding to H(s) = exp(+is).

(See Example 1 below.)

To illustrate what happens when logarithms appear

in the expansion of G(s), as s - 0+, let us suppose

that c = a in (1.2), cp is as in (5.2), and

(5.13) g(t) -g 0 1 (t-c)'D-llog(t-c) + goo(t-c)ý-l, t - c+.

After some calculation we find that, in (3.15), N(0) = 1

and

a 0 = 01 ,0  o1O

( 5.1 4 ) 0 - 0

dgoll()1 001 r
00 00 Lg°° - °o

Thus, it follows from (4.2) and (5.14) that, in this case,



25

1) I(: CO (A0o 90og) M[H(U.s);-2-1

+ + - ipo 0

(5.15)

As a final general result, let us obtain an infinite

asymptotic expansion of I (X) in the case where

(5.16) L(t) a t-c

and g(t) is infinitely differentiable at t = c. Then

9(t) 7 g(m).L (t-C)Om, t- C

(5 .17) 
m;o

g(t) ~c.ctm t -C.
m=O

Now upon applying (4.11) we obtain

S X '- rl) ( )M[H(s);m+l1 +

m=O

If any terms in this sum (5.18) are non-zero, then

we must conclude that t c is a critical point for

I(X). Alternatively, if the right hand side of (5.18)

is identically zero, then t - c is not critical. The

issue depends solely on the kernel and at that only

through the quantities

(5.19) MrH(s);m+ll + (-l)mMrH(-s);m+ll, m - 0,1,2 ....
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Thus, in general, t = c is critical whenever H is

such that at least one of the quantities (5.19) is

non-zero. Furthermore, it is readily seen that the

same conclusion holds when m is any cM function that

vanishes at t = c.

We 9ha]l now consider two illustrative examples.

Example 1: Suppose H(s) is the complex Fourier kernel

exp(is). We have by direct computation

(5.20) M[exp(is);z] = r(z)exp(4--)

and

(5.21) M(exp(is);z] = e-"iZ M(exp(-is);z].

From this last relation we find

(5.22) Mrexp(is);m+l] + (-l)mM(exp(-is);m+l] = 0, m = 0,1,2,...

and hence, as anticipated in the introduction, the

interior zeros of r are not critical points for Fourier

type integrals.

Suppose now that g is continuous at t - c and

has a simple stationary point there. Then it follows

from (5.12) and (5.20) that

This.willbe rco)gnize a .thestanaxprsgnt p"(c)i

This will be recognized as the standard stationary phase
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formula in the case where a(c) - 0. This last restric-

tion is of course unnecessary and can be avoided quite

simply. Indeed, buppose that at t - c, c has a

simple stationary point, but cD(c) pi 0. Then we write
b

(5.24) I(N) = exp(ic(c))aeXp[iX(t(t)-e(c)]g(t)dt.
a

Since

(5.25) Ct)-C(C)

has a sir.ple stationary point at t = c and *(c) = 0,

we find th'at we need only multiply (5.23) by exptiXN(c))

to obtain the valid result in this case. Furthermore,

the contribution from any critical point at which v 4 0

can be recovered in an analogous manner from the corre-

sponding contribution in the case where t. vanishes at

the critical point.

Finally suppose that c = a and (5.13) holds. Sup-

pose further that cp(t)-m(c) satisfies the relations

satisfied by rn(t) in (5.2). Then from (5.15), (5.20)

and the remarks of the preceeding paragraph, we find

that now

U + rim ( XI -noI)r o,

(5.26)

0 go ," 00 PO LCO
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Here #(z) is the logarithmic derivative of the gamma

function r(z). We might point out that the last case

was considered in detail by Erdelyi [ 8 ] and by I'nKenna [ 9].

Example 2: Let us now suppose that in (1.2)

(5.27) H(s) = Jn(s), n = 0,1,2, ....

Here Jn is the Bessel functlon of the first kind of

order n. We have [5 ]

1 1
(5.28) M[Jn(s);z] = 2z-_I F(Z+f )

T'(,- t-z+l)

Since Jn(s) is even about zero when n is even and

odd about zero when n is odd, we have

(5.29) M[Jn(s);Z) - -M[Jn(-S);z], n odd

M[Jn(s);z) = M[Jn(-S);z], n even.

From this it follows that

2mr(1 m+n+l])
(5.30) MJn(s);M+l] + (-l)mM[Jn(-s);m+l] 1+(_n)l-n,,

m = 0,1,2,...

and hence for any integer n one half of the quantities

(5.30) are not zero. Thus t = c is a critical point

in this case.
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APPENDIX

In this Appendix, we shall prove Lemmas 1, 2 and 6

of the text.

Proof of Lemma 1: We introduce the functions
M N(m) -r- gs)n

(Al) as)=exp{ s +is '%1(s)j , 6' M( 10 )

m=O n=O

(A2) Hk(s) = H(s) - "k(s).

Here
I<V15

(A3) uO(s) I bAs-06

i=0

and for any positive k, we choose M = M(k) to be

the largest integer such that

(A0) Re(rM-rO) < k.

We observe that H(s) and ak have identical

asymptotic expansions, as s - +w, to order
s rM(log s)N(M). As a result, Hk(s) = O(s -k+Re(rO)) from

which it follows that MrHk(s);zl is analytic in a

strip with right limit Re(z) < k+Re(r 0 ). The real exponential

factor in 7k assures us that MrFk(s);zl is analytic

in the left half plane Re(z) < Re(r 0 ). Thus the left

limit of the strip of analyticity of MrHk;zl is the

same as that of MrH;z]. Let us denote this limit by

Re(z) = a.
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Below, we list the relevant Mellin transforms along

with their strips of analyticity. We recall that in its

strip of analyticity a Mellin transform decays to zero

as Iy --.

Mellin Transform Strip of Analyticity

M[H;zl -a < Re(z) < Re(r 0 )

Mrok;z -- < Re(z) < Re(r 0 )

MrHk ;z -a < Re(z) < Re(r 0 ) + k

From the above list we see that in order to analytically

continue MrH;zl into the region Re(z) < k+Re(r 0 ) we need only

determine the analytic continuation of M[ak;z] into the

strip Re(r 0 ) < Re(z) < Re(r 0 ) + k. Furthermore, since

M[Hk;z) decays to zero as yj - in -a < Re(z) < Re(r 0 ) + k,

any algebraic growth, in this limit, M[H;z] must

arise from M[ak;Z].

Since ik(s) Is a finite sum, so is its Mellin

transform. A typical term in M([k;z] is given by

(A5) I[z;r] = fexp{-s- k+is (s)I(log s)nsz-r- lds, Re(z)<Re(r).

In (A5) we rotate the path of integration onto the ray

arg s = 9 where 0 < 9sgn(b 0 ) < w/2v. The effect of

this rotation is to introduce sufficient decay at

so that the integral in (A5) converges for all z.

Hence I[z;r] can be continued into the entire z-plane
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as a holomorphic function. It remains only to estimate

the continuation as lyl -•"

In (A5) we stretch the integration variable s by

the factor lIYlI/ to obtain

(Ab) I[z;r] = jyI(x-r)/ v'expX{-((yI i/vs)/vs ) x--l

• exp~ily1 (sVW(s l Yl) + sgn y log s ds.

The function D>(slylI/v) is a finite sum of the form

(A7) D(slyl l/V) = b0 + b 1 (slyIl/v)" +

From this we find that the phase function

(AE) :(sy) = s•'a(slylI/v) + sgn y log s

has stationary points (points at which ts = 0) sq such

that

(A9) s /+ O(Iy-(-).

Here q labels the different choices of the v root.

We note that when -sgn y/vb0 < 0, no stationary

points are near the positive real axis. When

-sn y/,,bI 0, however, there are simple stationary

points on or near the positive real axis. Armed with

this Informption, we can apply the results of reference [7 1,

to conclude that
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(AO) O((y 1 'R), for all R; z's n < 0
lim I[z;rl = (x-r)/v- -i

lyl" 0(IyI ) -egn y> 0.

This completes the proof.

We remark that the relevant results of reference f7

essentially justify the formal application of the ordinary

method of stationary phase to the integral in (A6).

Proof of Lemma 2: By hypothesis

(All) M(G;z] = [Is Y'I(sx (s))ds
0

is absolutely convergent for all Re(z) = x > x 0 .* Upon

integrating by parts q times and using the stated

properties of (S d (sxG), we'obtain

(A12) M[G;z) = (-1 / s [s-Q'(sxG(s))ds"

We now break the interval of integration at the points

of discontinuity of 0 (q+l)(s) and integrate by parts

once more in the resulting finite sum of integrals. In

this manner we obtain

o1(Al31 rsi sq( ~))s=0)

V Note that the assumptions made imply that G(s) - o(s ,
-x0as s - ., for all r and G(s) =0(s 0) as s -. 0+.
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which, when combined with (Al2), completes the proof.

Proof of Lemma 6: If Re(z) - x > -Re(a 0 ), then the

result follows from Lemma 2 when we note that the con-

ditions ( )p(s G) = 0, p O,l,...,q, as s - 0+

are implied by the assumed differentiability properties

of the expansion (3.15). Now suppose that o is any

real number greater than Re(a 0 ). Also let V(p) and

v(p) be positive integers satisfying the conditions

(AI4) Re(a,_I) < p < Re(a,), Re(a 0) +v > Re(a).

We now consider the functions
1 N(m) a -

7 7d s m(log )n 8(A15) .(s) = L mnSs
m=O n=O

(A16) G0 (s) = G(s) - (s)

and note that v(o) has been chosen so that the asymptotic

expansions of G and c agree to order Re(al). Thus,

as s-0+

(A17) G 0 (sRe(au))

We also note that G0 (s) has all of the properties

attributed to G(s) in the statement of the lemma.

Hence, upon applying Lemma 2, we immediately find that,

for x > -Re(a ) and jyj -

| =U
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By direct calculation we have that

(A19) Mt ;z1 P Zd sm +z-(log s)ne ds

?-9 g~m an1 d - oS M e S ds

m=O n=O
p-l N m)n n a +Z4  z

m=O n-O

in the region Re(z) > -Re(ao) and by analytic continu-

ation in the entire z-plane. We know, moreover, that

each term in (A19) decays exponentially as jYI - for

all x. Finally, since

(A20) M[G;zl = M[f ;z] + MrG ;z],

P p

we have that (3.16) holds for Re(z) > -Re(au(p)). How-

ever, p is arbitrary and lim Rera 1 = c, so that

upon letting p - a we obtain the desired result.


